Cellular Respiration - Guided Notes

Mitochondria

The location of cellular respiration in

Outer membrane Inner membrane	Function of mitochonds			
The Equation				
How do the equations of photosynthesis and cellular re	espiration compare?			
Write them here:				
o Photosynthesis:				
o Cellular Respiration:				
Glucolusis				
Literally means				
• stage in				
• Occurs in the				
Process in which 1 molecule of	is b	roken in		, producing
molecules of				
And it keeps going				
Requires ATP, but produces ATP → net gain of		2 ADP + 2 P	2 ATP	
NAD+ given electrons and becomes	Glucose	2 NAD+	2 NADH + 2 H ⁺	2 Pyruvic acid
• f	or cellular respiration			
Super fast! Produces	of ATP molecules in just a	few milliseco	onds	

• You only have so many NAD+ available, so this process can't keep happening

Path of Cellular Respiration

• Causes _____

Ferme	ntation	
•	Anaerobic – follows Glycolysis when	
•	Not how the normal process of CR is supposed to go!	
•	releases fro	m food molecules by producing
	ATP in absence of O2	
•	The electrons stored in NADH are returned to	, letting the NAD+ go back to
	and keep making ATP	
	• fermentation	
	• fermentation	
Alcoho	lic Fermentation	
•	Used by → why bread rises	
•	Converts sugar into	
Equat	ion:	
Lactic	Acid Fermentation	
•	In many cells, the pyruvic acid that accumulates from	can be converted into
•	Produced in your body during	

Equation:

Krebs Cycle

- In the presence of ______, cellular respiration proceeds from _____ to the *Krebs Cycle*
- Breaks down _______
- Occurs in _____

Krebs Cycle

- Discovered in ______by Hans Krebs biochemist

Steps of the Krebs

Before the cycle starts "turning"

- \odot Step 1 \rightarrow ______ enters the mitochondria
- Step 2 → _____ carbon molecule from pyruvic acid breaks off to form _____
- Step 3 → other two carbon atoms tack onto ______ this molecule

becomes acetyl coenzyme A

Step 4 → Acetyl CoA adds the two carbon acetyl group to a 4 carbon molecule...

THIS NEW 6 CARBON MOLECULE IS

Now the cycle starts turning

- Step 1 → ______
 - That carbon becomes a _____
 - NAD+ picks up _____

Moving along. • Step 2	 2 →		
•	_, ,		
•	-		
•	formed (only 1)		
Finishing up			
	$3 \rightarrow$ the	is ready to start the cycle again!	
•	FAD picks up		
•	NAD picks up one last set of electrons and H+		
End Result			
One turn of t	he Krebs Cycle gives you these products:		
Electron Tran	•	ycle to convert	
● In eul	karyotes, the ETC is a series of carrier proteins lo	ocated in the	
	of the mitochondr	ia	
● In pro	okaryotes, the ETC is in the		
Electron Tran	nsport Chain		
		are transported through the ETC	
•	Their energy helps transport		
At the	e end of the ETC an enzyme (named) is waiting patie	ently to
snatc	h up the electrons and a couple H+		
•	The enzyme combines the electrons, H+, and	O ₂ to make	
● H+ es	cape to	space	
•	H+ builds up in the intermembrane space, ma	aking it	
•	The H+ rush back to the	membrane side	
•	As they pass, they cause	to spin and make ATP	
Total it up!			
•	e presence of oxygen –		
•	of the total		
•	What happened to the remaining 62%?		